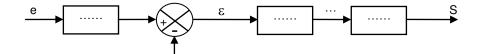
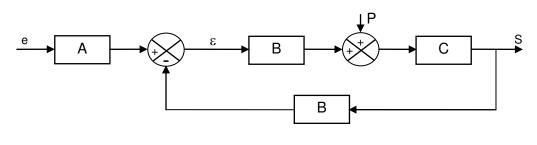
Exercice 1:


Passage d'un système d'équation à un schéma fonctionnel :

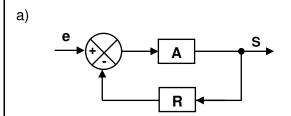
Soient les équations suivantes :

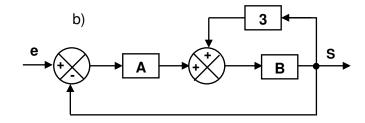
$$\varepsilon = 2e - 5S$$
 , $S = A.x$ et $x = B \varepsilon$

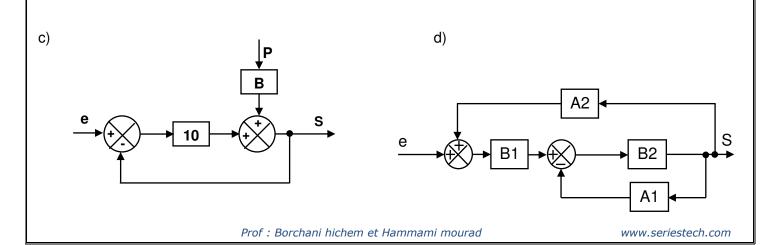
Compléter le schéma fonctionnel correspondant :


Avec { e : signal d'entrée (consigne) S : signal de sortie

Exercice 2:

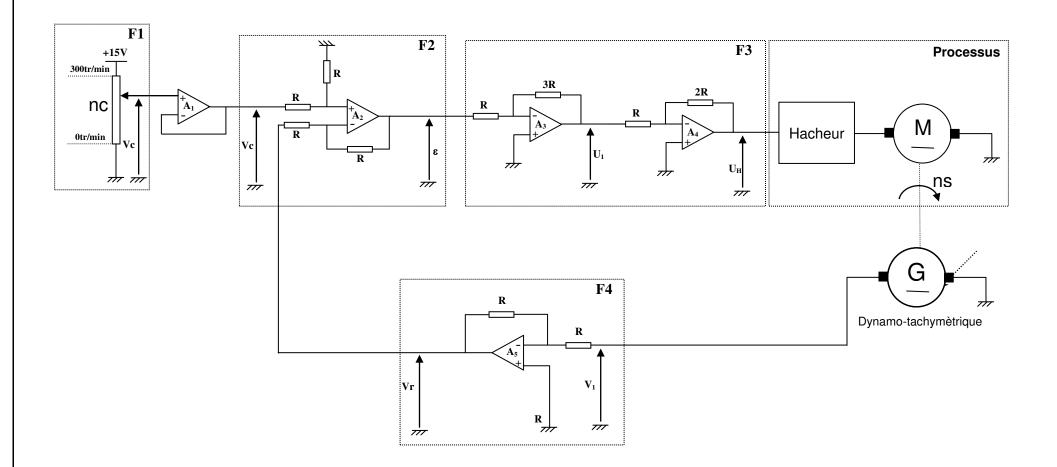

Passage d'un schéma fonctionnel à un système d'équation:


Déterminer les équations à partir du schéma fonctionnel suivant :



Exercice 3:

Simplifier les schémas fonctionnels suivants par la méthode graphique. Puis exprimer S en fonction de e.

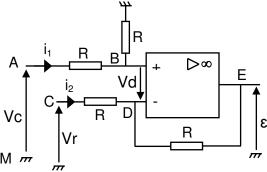


Laboratoire génie électrique 4Stech	Série d'exercices N°7	Asservissement	Page 2/7
-------------------------------------	-----------------------	----------------	----------

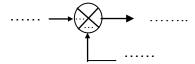
Exercice 4:

Le schéma de commande d'un moteur à courant continu asservi en vitesse est donné ci-dessous.

Tous les ALI sont supposés idéaux. La tension de polarisation symétrique est 15V

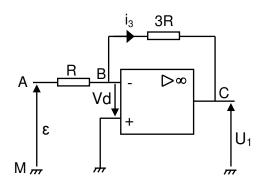

1- Etude de la fonction F₁:

- a. Exprimer la tension Vc en fonction de nc.
- b. Représenter cette relation par un schéma fonctionnel :

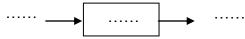


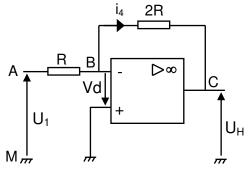
2- Etude de la fonction F₂:

 \boldsymbol{a} . Exprimer la tension ϵ en fonction de \boldsymbol{Vc} et \boldsymbol{Vr} :

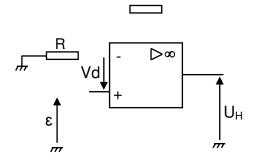


- b. Déduire le rôle de cet étage dans la chaîne d'asservissement :
- c. Représenter cette relation par un schéma fonctionnel :

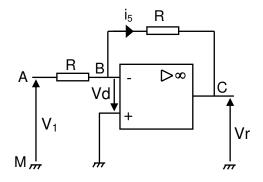


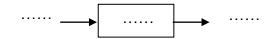

3- Etude de la fonction F₃:

a. Exprimer la tension U_1 en fonction de ϵ .



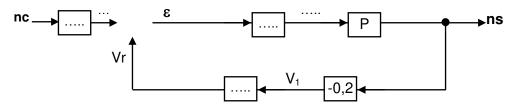
- **b**. Exprimer la tension \mathbf{U}_H en fonction de \mathbf{U}_1 .
- c. Représenter la fonction F₃ par un schéma fonctionnel :


d. Proposer un montage à base d'un seul A.L.I qui permet de remplacer la fonction F₃:

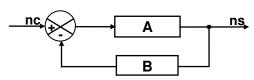

Prof: Borchani hichem et Hammami mourad

4- Etude de la fonction F₄:

a. Exprimer la tension Vr en fonction de V1:



b. Représenter cette relation par un schéma fonctionnel :



5- Schéma fonctionnel du système :

a. Compléter le schéma fonctionnel ci-dessous représentant l'asservissement étudié : (Le hacheur et le moteur sont représentés par un bloc P)

b. Mettre le schéma fonctionnel ci-dessus sous la forme suivante -

c. Utiliser la formule de black pour exprimer la transmittance $T = \frac{ns}{nc}$

Exercice 5:

Le schéma structurel de régulation de position d'une antenne parabolique est donné ci-dessous.

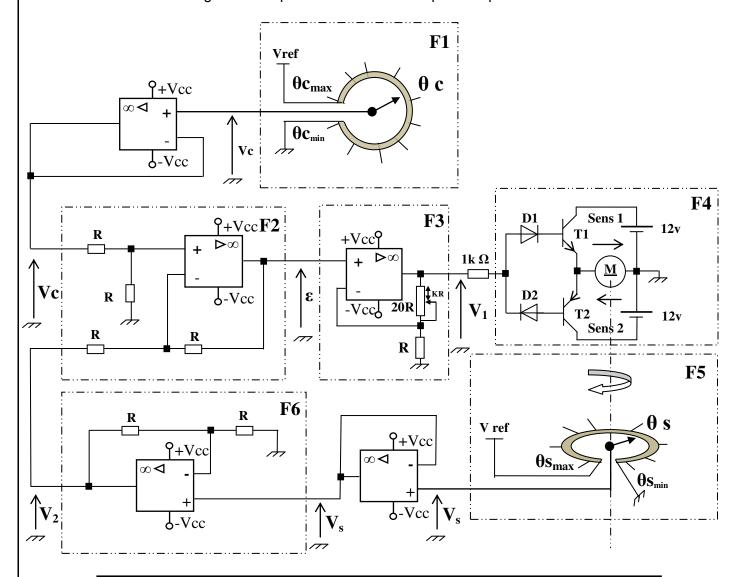
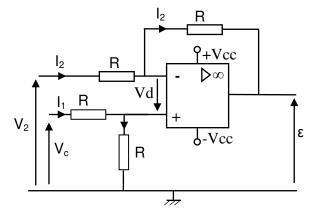


Schéma structurel de régulation de position d'une antenne parabolique

ETUDE DES ETAGES DU SCHEMA STRUCTUREL DE REGULATION DE POSITION:

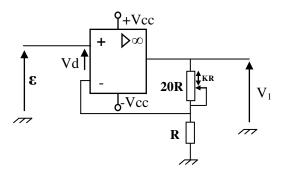
N.B. tous les A.L.I. sont supposés idéaux.

Etude de la fonction F1:

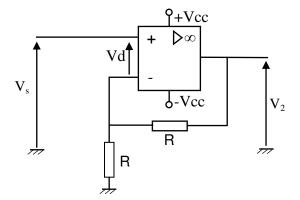

Exprimer Vc en fonction de θ c sachant que : Vréf = 12V; θ c max=300 ° et θ c min = 0°.

Etude de la fonction F5

Exprimer Vs en fonction de θ s sachant que : θ s max=320 ° et θ s min = 0°.


Etude de la fonction F2:

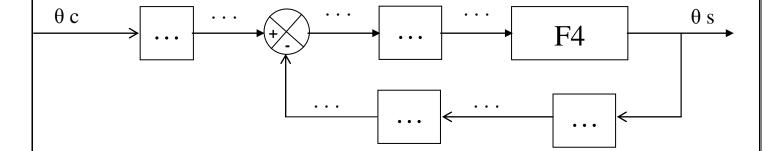
En appliquant les lois des mailles et des nœuds exprimer ε en fonction de Vc et V₂.


Etude de la fonction F3:

En appliquant les lois des mailles et des nœuds exprimer V_1 en fonction de ϵ et K; sachant que (0 < K < 20).

Etude de la fonction F6:

En appliquant les lois des mailles et des nœuds exprimer V2 en fonction de Vs.


Etude de la fonction F4:

Compléter le tableau par les mots suivants : saturé, passante, bloqué(e), arrêt, sens1, sens2.

V1	D1	D2	T1	T2	rotation du moteur
>0					
<0					
=0					

Schéma fonctionnel global :

Compléter le schéma fonctionnel global du système de régulation de position suivant :

